Density B First things First B Two Different Types of Volume Units

One factor to take into consideration is that we have two different types of volume units to deal with. Liters and Decimeters cubed (dm^{3})

Notice that Table 4 shows the relationship of cubic volumes to each other as will as to Liter volumes.
There is a simple relationship between them which is listed in Table 4.
The ratio
$\frac{\mathbf{1} \mathbf{d m}^{\mathbf{3}}}{\mathbf{1 L}}$ or $\frac{\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } }}}{\mathbf{1 ~ m l}} \quad$ are therefore the ratios that relate Table 3 to Table 4

By using one of these two ratios you can convert between both types of volume units easily.

Table \# 4 ---- Metric Volume Conversion Table for dm^{3}

Volume	$1000 \mathrm{dm}^{3}$	$1 \mathrm{dm}^{3}$	$1 \mathrm{dm}^{3}$	$1 \mathrm{~cm}^{3}$	$1 \mathrm{dm}^{3}$
	$1 \mathrm{~m}^{3}$	1 L	1000 mL	1 mL	$1000 \mathrm{~cm}^{3}$

Some examples of conversions between the two types of volume units: (Refer to Table \# 3 on your Metric Conversion Table Handout for conversions between units of volume involving Liters, milliliters, etx.)

Example 1:
How many hL are in $450 \mathrm{dm}^{3}$?
$450 \mathrm{dm}^{3} \quad \mathrm{x} \quad \frac{1 \mathrm{~L}^{3}}{1 \mathrm{dm}^{3}} \quad \mathrm{x} \quad \frac{1 \mathrm{hL}}{100 \mathrm{~L}}=4.5 \mathrm{hL}$
Example 2:
How many cm^{3} are in 30 dL ?
$30 \mathrm{~d} \times \frac{1 \amalg}{10 d \boldsymbol{L}} \times \frac{1 \mathrm{dm}^{3}}{1 \mathrm{~L}} \times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{dm}^{3}}=3000 \mathrm{~cm}^{3}$
Here is another way to set up the problem.
$30 \mathrm{dH} \quad \frac{1 \amalg}{10 d \boldsymbol{L}} \quad \mathbf{x} \quad \frac{1000 \mathrm{mt}}{1 \mathrm{~L}} \quad \mathbf{~} \quad \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{ml}}=3000 \mathrm{~cm}^{3}$

Example 3:
Convert 525 ml to $\mathrm{m}^{3} \quad$ (This is an example of how scientific notation is use. Where numbers will be exceptionally large or exceptionally small you are expected to use scientific notation)

Example 4:
Convert $50 \mathrm{~m}^{3}$ to $\mu \mathrm{L}$

$$
10^{3}
$$

$50 \mathrm{m3} \times \frac{1000-\mathrm{dm} 3}{1 \mathrm{m3}} \times \frac{1 \mathrm{~L}}{1-\mathrm{dm} 3} \times \frac{106 \mu \mathrm{~L}}{1 \mathrm{~L}}=50 \times 109 \mu \mathrm{~L}$ or $5.0 \times 10^{10} \mu \mathrm{~L}$

